China high quality DIN/ANSI/JIS Standard Sprockets Industrial Gear Teeth Rack Bevel Bicycle Stainless Transmission Drive Part Carbon Steel Plate Idler Wheel Harden Teeth Sprockets

Product Description

SPROCKET  1/2” X 5/16”  08B SERIES SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 13.0mm
Radius Width C 1.3mm
Tooth Width b1 7.0mm
Tooth Width B1 7.2mm
Tooth Width B2 21.0mm
Tooth Width B3 34.9mm
08B SERIES ROLLER CHAINS  
Pitch 12.7 mm
Internal Width 7.75 mm
Roller Diameter 8.51 mm

 

 

Z de dp SIMPLEX DUPLEX TRIPLEX
D1 D2 D3
8 37.2  33.18  8 10 10
9 41.0  37.13  8 10 10
10 45.2  41.10  8 10 10
11 48.7  45.07  10 10 12
12 53.0  49.07  10 10 12
13 57.4  53.06  10 10 12
14 61.8  57.07  10 10 12
15 65.5  61.09  10 10 12
16 69.5  65.10  10 12 16
17 73.6  69.11  10 12 16
18 77.8  73.14  10 12 16
19 81.7  77.16  10 12 16
20 85.8  81.19  10 12 16
21 89.7  85.22  12 16 16
22 93.8  89.24  12 16 16
23 98.2  93.27  12 16 16
24 101.8  97.29  12 16 16
25 105.8  101.33  12 16 16
26 110.0  105.36  16 16 16
27 114.0  109.40  16 16 16
28 118.0  113.42  16 16 16
29 122.0  117.46  16 16 16
30 126.1  121.50  16 16 16
31 130.2  125.54  16 16 20
32 134.3  129.56  16 16 20
33 138.4  133.60  16 16 20
34 142.6  137.64  16 16 20
35 146.7  141.68  16 16 20
36 151.0  145.72  16 20 20
37 154.6  149.76  16 20 20
38 158.6  153.80  16 20 20
39 162.7  157.83  16 20 20
40 166.8  161.87  16 20 20
41 171.4  165.91  20 20 25
42 175.4  169.94  20 20 25
43 179.7  173.98  20 20 25
44 183.8  178.02  20 20 25
45 188.0  182.07  20 20 25
46 192.1  186.10  20 20 25
47 196.2  190.14  20 20 25
48 200.3  194.18  20 20 25
49 204.3  198.22  20 20 25
50 208.3  202.26  20 20 25
51 212.1  206.30  20 25 25
52 216.1  210.34  20 25 25
53 220.2  214.37  20 25 25
54 224.1  218.43  20 25 25
55 228.1  222.46  20 25 25
56 232.2  226.50  20 25 25
57 236.4  230.54  20 25 25
58 240.5  234.58  20 25 25
59 244.5  238.62  20 25 25
60 248.6  242.66  20 25 25
62 256.9  250.74  25 25 25
64 265.1  258.82  25 25 25
65 269.0  262.86  25 25 25
66 273.0  266.91  25 25 25
68 281.0  274.99  25 25 25
70 289.0  283.07  25 25 25
72 297.2  291.15  25 25 25
75 309.2  303.28  25 25 25
76 313.2  307.32  25 25 25
78 321.4  315.40  25 25 25
80 329.4  323.49  25 25 25
85 349.0  343.69  25 25 25
90 369.9  363.90  25 25 25
95 390.1  384.11  25 25 25
100 410.3  404.32  25 25 25
110 450.7  444.74  25 25 25
114 466.9  460.91  25 25 25
120 491.2  485.16  25 25 25
125 511.3  505.37  25 25 25

BASIC INFO.

Type:

Simplex, Duplex, Triplex

Sprocket Model:

3/8″,1/2″,5/8″,3/4″,1″,1.25″,1.50″,1.75″,2.00″,2.25″,2.00″,2.25″,2.50″, 3″

Teeth Number:

9-100

Standard:

ANSI , JIS, DIN, ISO

Material:

1571, 1045, SS304 , SS316;  As Per User Request.

Performance Treatment:

Carburizing, High Frequency Treatment, Hardening and Tempering, Nitriding

Surface Treatment:

Black of Oxidation, Zincing, Nickelage.

Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order

Certification:

ISO9001 SGS

Quality Inspection:

Self-check and Final-check

Sample:

ODM&OEM, Trial Order Available and Welcome

Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 10 days for samples. 15 days for official order.

 

INSTALLATION AND USING

The chain spocket, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

NOTICE

When fitting new chainwheels it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 
 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

bike sprocket

How often should I replace bike sprockets to maintain optimal performance?

The frequency of replacing bike sprockets to maintain optimal performance depends on several factors, including the type of riding you do, environmental conditions, and how well you maintain your bike. Sprockets are subject to wear and tear over time, especially if you ride frequently and in challenging conditions. Here are some considerations for determining when to replace bike sprockets:

  • Visual Inspection: Regularly inspect your sprockets for signs of wear, such as hooked or pointed teeth, elongation, or missing teeth. If you notice significant wear or damage, it’s time to replace them.
  • Chain Wear: Sprocket wear is closely related to chain wear. As the chain stretches and elongates over time, it causes increased pressure and wear on the sprocket teeth. If you regularly replace your chain and practice good chain maintenance, you can extend the lifespan of your sprockets.
  • Riding Conditions: Riding in harsh conditions, such as muddy or sandy terrain, can accelerate sprocket wear. If you frequently ride in such environments, you may need to replace sprockets more often.
  • Shifting Performance: Worn-out sprockets can negatively impact shifting performance. If you experience frequent chain slipping, skipping, or difficulty shifting, it could be a sign that your sprockets need replacement.
  • Regular Maintenance: Proper bike maintenance, including regular cleaning, lubrication, and keeping the drivetrain clean, can help prolong the life of your sprockets. Regularly cleaning and lubricating the chain can reduce wear on both the chain and the sprockets.

As a general guideline, many cyclists replace their sprockets and chain together to ensure proper compatibility and reduce the risk of premature wear. In typical riding conditions, sprockets on a road bike may last anywhere from 3,000 to 10,000 miles (4,800 to 16,000 kilometers) or more. Mountain bike sprockets, which endure more demanding conditions, may need replacement more frequently, typically between 2,000 to 5,000 miles (3,200 to 8,000 kilometers).

Ultimately, the best way to determine when to replace your bike sprockets is through regular inspection and paying attention to your bike’s performance. If you notice any significant wear, shifting issues, or reduced performance, it’s a good indication that it’s time to invest in new sprockets for maintaining optimal performance.

bike sprocket

How do I know if my bike sprockets are compatible with my chain and derailleurs?

Ensuring compatibility between bike sprockets, chains, and derailleurs is essential for smooth and efficient gear shifting. Here are the steps to determine if your bike sprockets are compatible:

1. Sprocket Type: Identify the type of sprocket setup on your bike. Most modern bicycles use cassette-style sprockets on the rear wheel and one to three chainrings at the front crankset. Make sure you know the number of sprockets on your cassette and the number of chainrings on your crankset.

2. Chain Speed: Check the speed of your bike’s chain. This refers to the number of rear sprockets and the corresponding chain width. Common chain speeds for modern bikes are 8-speed, 9-speed, 10-speed, 11-speed, or 12-speed. The chain speed must match the number of sprockets on the rear cassette.

3. Chain Width: Ensure that the chain width corresponds to the chain speed. For example, an 8-speed chain is wider than a 10-speed chain. Using the correct chain width is crucial for proper engagement with the sprockets and chainrings.

4. Derailleur Compatibility: Check if your derailleurs are compatible with the number of sprockets on the cassette and the chainrings. Different chain speeds require derailleurs with specific capacity and range to accommodate the various gear ratios.

5. Teeth Count: Consider the number of teeth on your chainrings and cassette sprockets. The chainrings’ teeth count affects the bike’s gear range and overall gearing ratios. Make sure the combination of chainrings and cassette sprockets provides the desired gear ratios for your riding style and terrain.

6. Brand and Model: When replacing sprockets, chains, or derailleurs, try to use components from the same brand and model series. Mixing different brands or models may lead to compatibility issues, affecting shifting performance.

7. Seek Professional Advice: If you are unsure about compatibility or need to make significant changes to your bike’s sprocket setup, it’s advisable to seek the advice of a professional bike mechanic or a knowledgeable cycling specialist. They can help you choose the appropriate components and ensure compatibility between the sprockets, chain, and derailleurs.

Proper compatibility between sprockets, chains, and derailleurs is crucial for optimal performance, smooth gear shifting, and overall riding experience. Taking the time to ensure compatibility and using quality components will contribute to a more enjoyable and efficient cycling experience.

bike sprocket

How do bike sprockets work in conjunction with the chain and other components?

A bike sprocket works in conjunction with the chain and other components of the bicycle’s drivetrain to transfer power from the rider’s pedaling motion to the rear wheel, propelling the bike forward. The drivetrain is a complex system that involves the chain, front and rear sprockets (chainrings and cassette), derailleurs, and shifters. Here’s how these components work together:

1. Pedaling Motion:

When the cyclist pedals, the force applied to the pedals causes the front sprocket (chainring) to rotate. The number of teeth on the chainring determines the gear ratio and the mechanical advantage of the drivetrain. A larger chainring provides more power for higher speeds, while a smaller chainring is used for easier pedaling and climbing hills.

2. Chain Engagement:

As the front chainring rotates, the bicycle chain engages with the teeth on the chainring. The chain is designed to fit perfectly into the spaces between the teeth and mesh securely, ensuring efficient power transfer.

3. Chain Movement:

As the chain engages with the front chainring, it moves around the bike’s sprockets. When the rider switches gears using the shifters, the rear derailleur moves the chain across the rear cassette, selecting different-sized rear sprockets (cogs). The combination of the selected front and rear sprockets determines the gear ratio.

4. Rear Wheel Power:

As the chain engages with the rear cassette’s sprockets, the rotational force is transferred from the chain to the rear wheel. The selected gear ratio affects the bike’s speed and the effort required for pedaling. Higher gear ratios offer higher speeds but require more pedaling effort, while lower gear ratios provide easier pedaling but lower speeds.

5. Shifting Gears:

To shift gears, the rider uses the shifters to move the chain from one sprocket to another. The front derailleur shifts the chain between the front chainrings, while the rear derailleur moves the chain across the rear cassette. Proper gear shifting is crucial for maintaining an efficient cadence and optimizing power transfer.

6. Chain Tension:

The rear derailleur plays a vital role in maintaining proper chain tension. It moves the chain to accommodate the different-sized sprockets and takes up slack when shifting to prevent chain slippage or derailment.

The bike sprockets, chain, derailleurs, and shifters work together harmoniously to provide a wide range of gearing options, making pedaling more efficient and comfortable in various riding conditions. Regular maintenance, including chain lubrication and sprocket inspection, is essential to keep the drivetrain operating smoothly and to extend the life of these components.

China high quality DIN/ANSI/JIS Standard Sprockets Industrial Gear Teeth Rack Bevel Bicycle Stainless Transmission Drive Part Carbon Steel Plate Idler Wheel Harden Teeth Sprockets  China high quality DIN/ANSI/JIS Standard Sprockets Industrial Gear Teeth Rack Bevel Bicycle Stainless Transmission Drive Part Carbon Steel Plate Idler Wheel Harden Teeth Sprockets
editor by Dream 2024-05-09